Detachable Object Detection with Efficient Model Selection
نویسندگان
چکیده
We describe a computationally efficient scheme to perform model selection while simultaneously segmenting a short video stream into an unknown number of detachable objects. Detachable objects are regions of space bounded by surfaces that are surrounded by the medium other than for their region of support, and the region of support changes over time. These include humans walking, vehicles moving, etc. We exploit recent work on occlusion detection to bootstrap an energy minimization approach that is solved with linear programming. The energy integrates both appearance and motion statistics, and can be used to seed layer segmentation approaches that integrate temporal information on long timescales.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملDeveloping a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature
According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...
متن کاملDiscriminant Analysis and Adaptive Wavelet Feature Selection for Statistical Object Detection
We utilize the discriminant analysis to select wavelet features for efficient object detection. The analysis applies to the Bayesian classifier and is extended to the case of boosting. Based on the error analysis under the Bayesian decision rule, we reduce the number of coefficients involved in detection to lower the computational cost. Using a Hidden Markov Tree (HMT) model to describe the pat...
متن کاملA Fuzzy Goal Programming Model for Efficient Portfolio Selection.
This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...
متن کاملA Feature-Based Latent Variable Model Of Images For Efficient Inference
The important problem of efficient inference in Bayesian networks is tackled by principled network structure design. It is argued much inference efficiency can be gained from intelligent feature selection, and a feature-based latent variable model of images is proposed to take advantage of such gains and include other efficiency-oriented components. The application in which the usefulness of th...
متن کامل